Organ-specific modulation complexity score for the evaluation of dose delivery
نویسندگان
چکیده
The purpose of this study was to correlate the modulation complexity score (MCS) with organ location and to predict potential dose errors for organs before beam delivery for intensity-modulated radiation therapy (IMRT) dosimetry. Sixteen head and neck cancer patients treated with IMRT were selected. Distribution of the relative dose error on each beam was performed using forward projection to the planned dose to compute the predicted dose after doing per-beam quality assurance. Original organ-specific modulation complexity score (oMCS) was created based on a modified MLC, which depended on organ location. First, MCS was calculated based on the change in leaf position between adjacent MLC leaves. Second, the segment edge map (SEM) calculated from the intensity map for each beam was applied to the calculation volume. The oMCS with segment edge (oMCSedge) was derived from the product of oMCS and SEM. The correlation between the dose errors (planned and predicted) and oMCSedge values was evaluated for the target and organs at risk. We have also expanded the original MCS concept to oMCSedge including the organ location. We observed a moderate correlation between the dose errors and oMCSedge for all organs and volumes of interest except the gross tumor volume, brain stem, and spinal cord. In other organs, a moderate improvement in sensitivity was observed on the SEM, which was correlated with dose errors. Although the implementation of oMCSedge would be impractical for normal clinical settings, it is expected that oMCSedge would help a treatment planner to judge whether or not the treatment plan would be acceptably delivered.
منابع مشابه
Evaluation of Organ Specific peripheral dose for Gamma knife 4C based on Monte Carlo
Introduction: Stereotactic Gamma Knife radiosurgery has been widely used for treating brain tumors. The scattered radiation outside of treatment field (peripheral dose) can induce the secondary cancer to specific organ. This paper investigated the absorbed dose to eyes, thyroid, heart, lung, breast and colon using a Monte Carlo technique for Mird phantom. We also study the ef...
متن کاملDevelopment and implementation of a Monte Carlo frame work for evaluation of patient specific out- of - field organ equivalent dose
Background: The aim of this study was to develop and implement a Monte Carlo framework for evaluation of patient specific out-of-field organ equivalent dose (OED). Materials and Methods: Dose calculations were performed using a Monte Carlo-based model of Oncor linac and tomographic phantoms. Monte Carlo simulations were performed using EGSnrc user codes. Dose measurements were performed using r...
متن کاملEvaluation of Electron Specific Absorbed Fractions in Organs of Digimouse Voxel Phantom Using Monte Carlo Simulation Code FLUKA
Background: For preclinical evaluations of radiopharmaceuticals, most studies are carried out on mice. Values of electron specific absorbed fractions (SAF) have had vital role in the assessment of absorbed dose. In past studies, electron specific absorbed fractions were given for limited source target pairs using older reports of human organ compositions.Objective: Electron specific absorbed fr...
متن کاملThorax organ dose estimation in computed tomography based on patient CT data using Monte Carlo simulation
Background: This study presents patient specific and organ dose estimation in computed tomography (CT) imaging of thorax directly from patient CT image using Monte Carlo simulation. Patient's CT image is considered as the patient specific phantom and the best representative of patient physical index in order to calculate specific organ dose. Materials and Methods: EGSnrc /BEAMnr...
متن کاملInvestigation of Freedom-Degrees impact on Modulation of Radiation
Introduction: Nowadays tendency to apply more degrees of freedom in high-tech radiotherapy systems, and consequent complex process to optimize dose calculation and delivery algorithms, is a challenge of radiation therapy optimization. Faster MLC speed, dose rate, Gantry angle variation, and other degrees, which have been utilized in IMRT, IMAT, VMAT, improved modulation of inte...
متن کامل